Bio-based Innovations for Industrial Applications 24 April 2024, 09:00-17:00 CET

Harrie Besselink

SINTEF

Andy Booth

Why safety testing ?

- safeguard human health
- environmental impact
- product performance
- regulatory compliance

Early tox testing will:

- facilitate early go-no go decisions:
 - prevent time loss on (a group of) molecules with non-favourable toxicity profile
 - improved overall toxicity profile from starting materials intermediates final materials
- give guidance for further testing
- facilitate compliance with regulatory requirements
- market introduction of safe bio-based products

Safety testing.....how?

Chemical

Toxicology

Classical testing of toxicity: in vivo (animal) testing extrapolated to human hazard

- time-consuming
- non-ethical
- technical concerns with animal testing
- since late 1950s, search for methods to reduce or eliminate animal testing.
 - "3 Rs" reduce
 - refine
 - replace

www.champion-project.eu

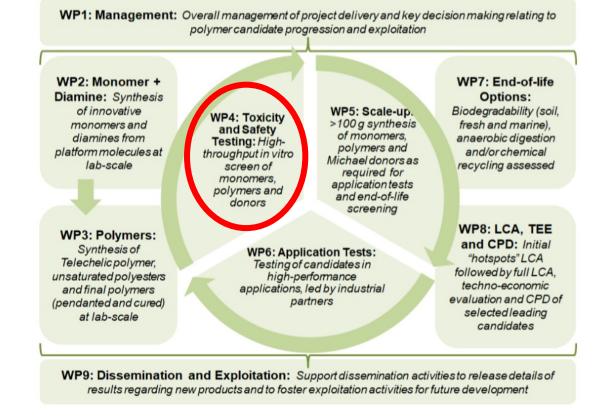
Circular High-performance Aza-Michael Polymers as Innovative materials Originating from Nature

WP4: Toxicity and Safety Testing

Harrie Besselink

Horizon 2020 European Union Funding for Research & Innovation

This project has received funding from the Bio Based Industries Joint Undertaking (JU) under grant agreement No 887398. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio Based Industries Consortium.

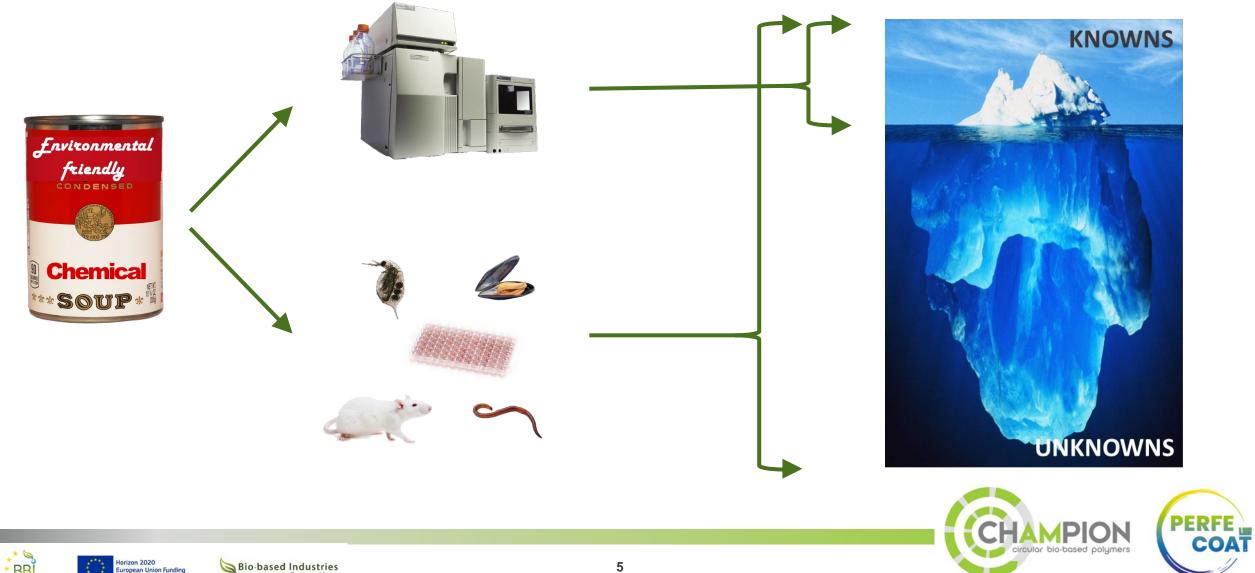

Circular High-performance Aza-Michael Polymers as Innovative materials Originating from Nature

Objective

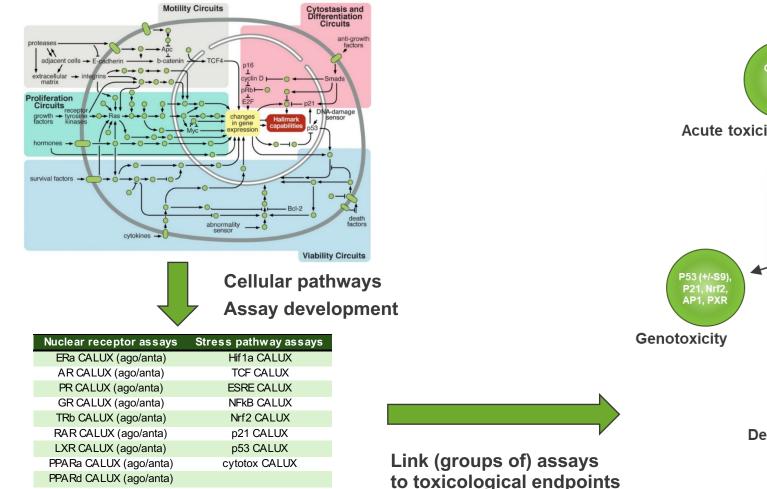
- develop novel bio-based Michael-addition polymers
- for use in home care products, structural adhesives, furniture coatings and automotive interior surfaces
- high functional qualities that cannot be met by current fossil-based products
- designed and assessed with improved end-of-life (circular by design)
- superior to current materials by ensuring that biodegradability and/or recyclability

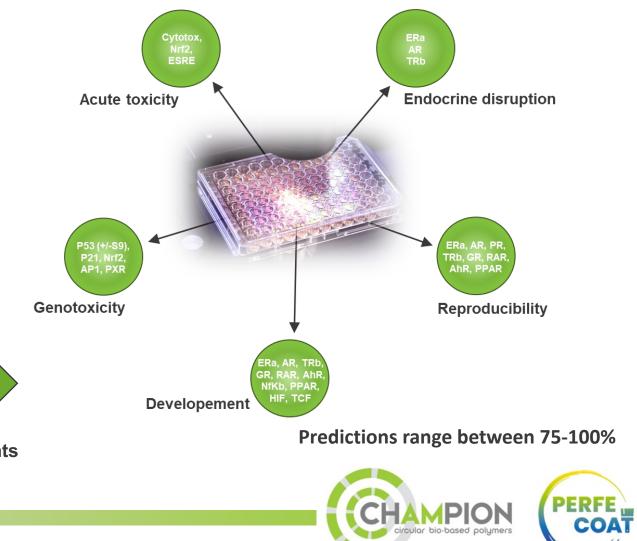
opean Union Funding

\sub Bio based Industries


Aim: assess the safety of monomers, polymers and products (coatings, adhesives,...)

Chemical analysis vs biological analysis

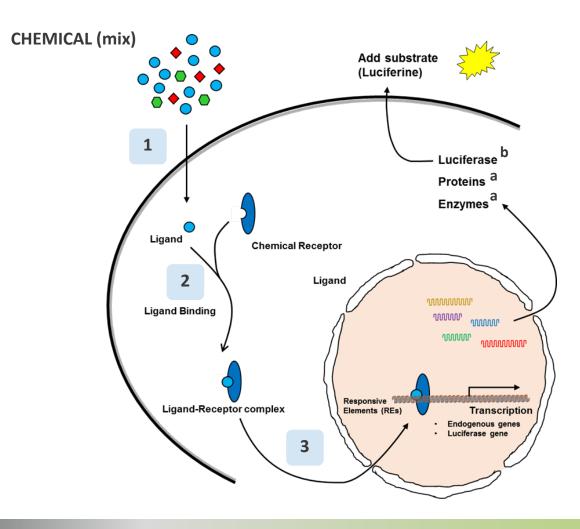




Research & Innovation

Safety testing...... cellular pathway-based approach

PPARg CALUX (ago/anta) AhR CALUX


izon 2020

uropean Union Funding

esearch & Innovatio

CALUX mechanism-based reporter gene assays

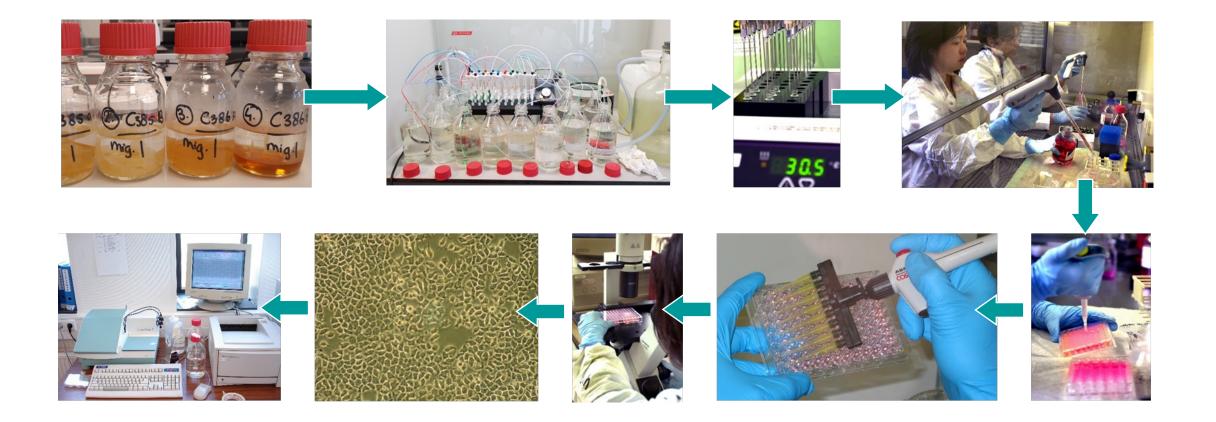
botor activation otor activation ceptor activation ceptor a activation estrogen receptor α activation estrogen receptor β activation estrogen receptor β activation estrogen receptor activation androgen receptor activation he receptor activation progesterone receptor activation	reference compound 2,3,7,8-TCDD benzo-a-pyrene 17β-estradiol tamoxifen 17β-estradiol tamoxifen dihydrotestosterone flutamide progesterone
otor activation ceptor activation ceptor α activation estrogen receptor α activation ceptor β activation estrogen receptor β activation eceptor activation androgen receptor activation he receptor activation	benzo-a-pyrene 17β-estradiol 17β-estradiol tamoxifen 17β-estradiol tamoxifen dihydrotestosterone flutamide
ceptor activation ceptor $α$ activation estrogen receptor $α$ activation ceptor $β$ activation estrogen receptor $β$ activation eceptor activation androgen receptor activation he receptor activation	17β-estradiol 17β-estradiol tamoxifen 17β-estradiol tamoxifen dihydrotestosterone flutamide
ceptor α activation estrogen receptor α activation ceptor β activation estrogen receptor β activation eceptor activation androgen receptor activation he receptor activation	17β-estradiol tamoxifen 17β-estradiol tamoxifen tamoxifen dihydrotestosterone flutamide
estrogen receptor α activation ceptor β activation estrogen receptor β activation eceptor activation androgen receptor activation he receptor activation	tamoxifen 17β-estradiol tamoxifen dihydrotestosterone flutamide
ceptor β activation estrogen receptor β activation eceptor activation androgen receptor activation he receptor activation	17β-estradiol tamoxifen dihydrotestosterone flutamide
estrogen receptor β activation eceptor activation androgen receptor activation he receptor activation	tamoxifen dihydrotestosterone flutamide
eceptor activation androgen receptor activation ne receptor activation	dihydrotestosterone flutamide
androgen receptor activation ne receptor activation	flutamide
ne receptor activation	
•	progesterone
progesterone receptor activation	
	RU486
oid receptor activation	dexamethasone
lucocorticoid receptor activation	RU486
ptor activation	Т3
receptor activation	retinoic acid
ation	rosiglitazone
ation	GW7674
ation	L165041
on	GW3965
ay activation	ТРА
n of p21 inhibitor of cell cycle progress	sion actinomycin D
f the Nrf2 pathway	curcumin
lent pathway activation	actinomycin D
lent pathway activation +/-S9	cyclophosphamide
thway activation	lithium chloride
y activation	ТРА
	cobaltous chloride
athway activation	stress tunicamycin
	on /ay activation n of p21 inhibitor of cell cycle progress if the Nrf2 pathway dent pathway activation dent pathway activation +/-S9 thway activation ay activation athway activation tion leading to endoplasmic reticulum

BioDetection Systems

orizon 2020

European Union Funding

r Research & Innovation


Р

Ρ

Ρ

Toxicity and safety testing using effect-based bio-analysis

zon 2020

Safety testing in a context of polymer application

COAT

circular bio-based polumers

(amines/diols, Michael acceptors, (unsaturated)polymers and Aza-Michael polymers)

activity low > high	Code	Owner	Cytotox20%	ERa	AR-anti	PR-anti	TRb	TRb-anti	PXR	PPARa	PPARa-anti	PPARg-anti	PPARd	PPARd-anti	HepG2-AhR	Hifla	TCF	AP1	ESRE	Nrf2	p21	p53 GENTOX	chemical class	
	Assay re	ef	-4.1	-9.8	-5.3	-8.4	-7.0	-4.4	-4.4	-7.0	-4.2 -5	.1 -6	8 -5.1	-5.7	-8.0	-2.6	-0.3	-6.7	4.6	-2.8 -	5.9 -	5.9		
Amines / diols	N75	WR	-0.5	>	>	>	>	>	>	>	>	> >	>	>	>	>	>	>	>	>	>		06. WP2 amines	Low bioactivity of amines/diol candidates
	N8S	WR		>	>	>	>	>	>	>	>	> >	>	>	>	>	>	>	>	>	>		06. WP2 amines	
Des	N95	WR	-0.6		>	>	>	>	-1.6	>	> :	> >	>	>	>	>	>	>	>	>			06. WP2 amines 08. WP3 diols	
Ē	D18a D23a	UoY AVA	>	>	>		>		>	>	>			>	>							00001000	08. WP3 diols	
<	UZJd	010		-	-	-		-	'	-	-	· ·	-	1	'	-	,	1	1	-0.9	· .	-	00. WF 5 01015	
Michael acceptors	M19	WR	-2.7	>	>	>	>	>	-3.2	-2.4	>	> >	>	>	>	>	>	-3.2	2.7	-3.2	> .		09. WP3 Michael acceptors 09. WP3 Michael acceptors	Reactive Micheal acceptors show
sha Pt	M20 M21a	WR WR	,17	>	>	>	>	~	-1.5	~	~		~	~	>	~	2	26	1.7	-1.0	>		09. WP3 Michael acceptors	relatively high bioactivity
Michael cceptor	M21b	WR	-1.7	-	-	>	-		-2.2	-				5	-		÷	-2.0	.1./	2.0			09. WP3 Michael acceptors	
5	M210	WR	_	>			s	5	-2.5	>	5		>	-	5	5	Ś	-3.0	Ś	3.0	· ·	_	09. WP3 Michael acceptors	
	THEAD		610						610		5 2							010		010	5 <u>6</u>	616		
Unsaturated polyester	P461	VTT	-2.4	>	>	>	>	>	>	>	>	> -2	5 >	>	>	>	>	-3.0	>	-2.9	>	-3.1	10. Unsaturated polyester	Unsaturated polyesters show relatively
ste	P46n	VTT	-2.4	>	>	>	>	>	>	>	>	> -2	5 >	>	>	>	>	-3.7	>	3.5	2.5 -	-3.0	10. Unsaturated polyester	
atu Jye:	P46p	VTT	-1.5	>	>	>	>	>	>	>	>	> -2	5 >	>	>	>	>	-2.6	>	-			10. Unsaturated polyester	high bioactivity
nső	P46q	VTT				>		and the second se	>	>	>		5 >		>		>	-2.6	>	_			10. Unsaturated polyester	
	P64	STAHL	-2.2	>	>	>	>	>	-4.7	>	>	> -4	0 >	>	>	>	>	-2.3	2.4	-3.4	> •	-2.0	10. Unsaturated polyester	
	C94a	UoY		>		~			>				>				0.5	>		-0.5			11. Aza-Michael polymers	Resulting Aza-Michael polymers show
hae	C94a	UoY	-			-			17	((- (Ś			-0.5			.0.5	<u>.</u>	and the second se	11. Aza-Michael polymers	
Aicl	C103a	UoY/UNI	>	>	>	>	>	>	>	>	>		>	>	>	>	>	>	>	>	>	-	11. Aza-Michael polymers	low bioactivity
Aza-Michael polymers	C116a	UoY	101124	>		>	>	>	>	>	>	> >	>	>	>	>	>	>	>	-0.5	>		11. Aza-Michael polymers	-
P D	C117a	UoY	-1.6	>	>	>	>	>	>	>	>	> >	>		>	>	>	>	>	-2.5	>	Concession in which the	11. Aza-Michael polymers	
																								DED

orizon 2020

European Union Funding

Integrate testing data with physico-chemical data and establish structure-activity relationships

SAR table

Compound	MW	Linear	Branched	Acceptor type	No. acceptor	Adduct	Effect				
			Mono	omers and diluents							
A6 [#]	low	•		а	low		-				
A17 [#]	low	•		b	low						
A12	low	•		а	low						
A16	low	•		С	low						
A22	low	•		b	low						
M15	low		•	d	medium						
M19	low	•		d	low						
(pre)Polymers											
M13	high	•	•	d	medium						
M21b	middle	•		d	low						
M21c	middle	•		d	low						
P22b	high	•		а	high						
P23c	high	•		С	high						
P23i	high	•		С	high						
P46c	middle	•		С	medium						
			aza-	Michael polymers							
C103a	high	•		С		•	-				
C118a	high	•		а		•	-				
C119a	high	•		а		•	-				
C61a	high	•		а		•					
C64a	high	•		С		•					
C94a	high	•		С		•					
C95a	high	•		С		•					

Aza-Michael acceptors exhibited much more activity than aza-Michael polymers

Monomers and diluents:

activity higher for candidates with more acceptor groups. activity higher for candidates with an acrylate as acceptor.

Prepolymers:

high activity, no relation with number/type of acceptor sites. Higher MW prepolymers slightly less active

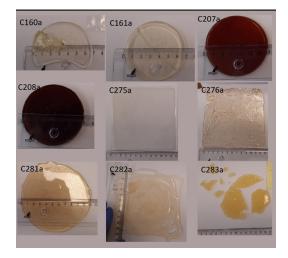
Bioactivity classification

- No activity or only cytotoxicity (CYT) at > 0.001 mg/ml
- Activity on one non-CYT assay at > 0.001 mg/ml
- Activity on >1 non-CYT assay OR at < 0.001 mg/ml
- Activity on >5 non-CYT assays OR >3 non-CYT assays at <0.001 mg/ml

BioDetection Systems

Bio-based Industries Consortium

opean Union Funding



Safety tests in a context of polymer application

(solid samples for migration studies insoluble cured polymers)

CALUX panel results for migration extracts of nine cured films

Code	Cytotox20%	ERa	TRb	PXR	PPARa	PPARg	PPARd	Hif1a	TCF	AP1	ESRE	Nrf2	p21	p53 GENTOX
Assay ref	-4.1	-9.8	-7.0	-4.4	-7.0	-5.1	-5.1	-2.6	-0.3	-6.7	-4.6	-2.8	-5.9	-5.9
C160a	-0.44	>	>	-0.4	>	>	>	>	>	-0.7	>	-1.4	>	-0.7
C161a	2.6	>	>	1.6	>	>	>	>	>	2.5	>	1.4	>	>
C207a	0.3	>	>	-0.01	>	>	>	>	>	-0.5	>	-1.0	>	-0.01
C208a	0.8	>	>	>	>	>	>	>	>	-0.2	>	-0.9	>	0.1
C275a	2.5	>	>	1.2	>	>	>	>	>	2.3	>	1.3	>	>
C276a	1.0	>	>	>	>	>	>	>	>	0.3	>	-0.2	>	0.3
C281a	2.5	>	>	1.7	>	>	>	>	>	1.7	>	1.5	>	1.2
C282a	2.2	>	>	1.2	>	>	>	>	>	1.2	>	1.5	>	1.2
C283a	1.6	>	>	>	>	>	>	>	>	1.3	>	-0.02	>	1.0

CALUX results of cured polymer film migration extract C207a, together with separate components.

Lowest effect concentrations in LOG(mg/ml)

zon 2020

ropean Union Funding

High Performance Bio-based Functional Coatings for Wood and Decorative Applications

Work package 6

WP6 - Safety and sustainability assessments

Month 1 – Month 31

Horizon 2020 European Union Funding for Research & Innovation

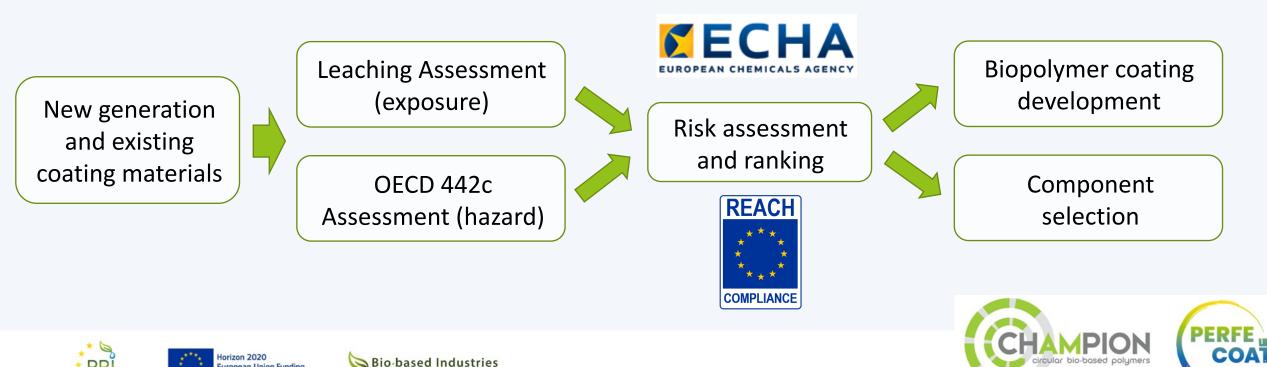
This project receives funding from the Bio-based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022370. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio-based Industries Consortium.

High Performance Bio-based Functional Coatings for Wood and Decorative Applications

WP6 Task 6.1 Chemical safety assessment

- Objectives:
- Feedback key chemical risk information for all candidate biopolymer coating materials (iterative 'safe by design' approach).
- Conduct leaching studies to determine components transferring from the polymer to (i) water and (ii) those that may cause skin irritation.

This project receives funding from the Bio-based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 101022370. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio-based Industries Consortium.



Task 6.1 - Chemical safety assessment

Conduct a comparison of the chemical exposure risks between the new and existing materials.

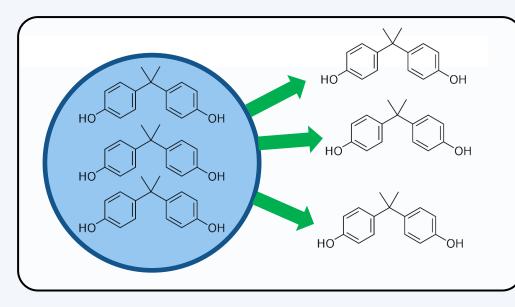
All major chemicals identified in the product leachates will be quantified and cross-referenced with the European Chemicals Association (ECHA) database and EU REACH regulation (EC 1907/2006).

Alternative will be proposed to substitute chemicals having the highest risk.

14

Activities:

- Chemicals/materials received are subjected to the skin sensitisation assessment (DRPA method).
- Average molecular weights (MWs) for four components were determined experimentally using LC-MS analysis.
- Further improvement of the accuracy and sensitivity of the method by developing an LC-MS/MS method for the quantification of peptides.

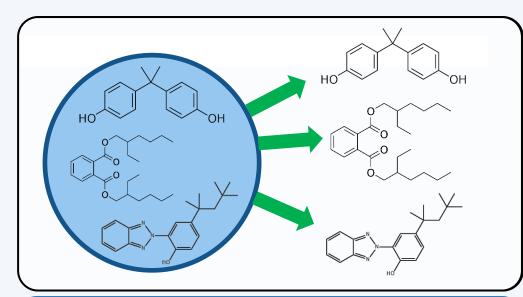


Aqueous leaching

(Additives, residual chemicals, monomers)

Polymer material HO HO OH Bisphenol A

Target and non-target screening

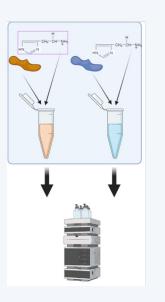


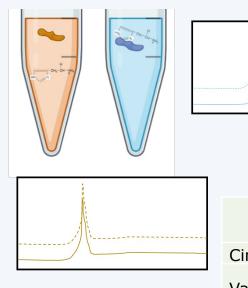
Aqueous leaching

(Additives, residual chemicals, monomers)

Challenge with chemical mixtures!

• Average molecular weight (MWs) of test chemical is required.





Establishment of a skin sensitisation method consisting of a chemical procedure (Direct Peptide Reactivity Assay
 – DPRA) used for supporting the discrimination between skin sensitisers and non-sensitisers.

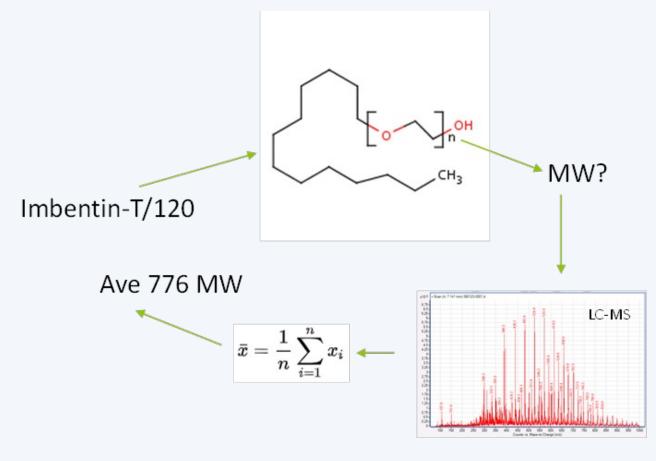
- The method tested and validated using recommended reference chemicals and is now ready for application.
- Further improvement of the accuracy and sensitivity of the method by developing an <u>LC-MS/MS method</u> for the quantification of peptides.

	CYS	LYS	Mean depletion	Reactivity	Model
Cinnemaldehyde 1	85.63%	72.62%	79.13%	high	Cysteine/Lysine
Vanillin 1	100.00%	inconclusiv e	100.00%	high	Cysteine-only
Formaldehyde 1	43.19%	2.82%	23.01%	moderate	Cysteine/Lysine
Ethylene glycol 1	97.32%	4.05%	50.69%	high	Cysteine/Lysine



Requires molecular weight of test chemical to be known

No.	Compound/Component	MW g/mol
1	Disponil SLS 101 Special	674
2	RHODAFAC RS/710-E	324
3	Emulsogen EPN 287	?
4	Polirol AL 1347	?
5	Imbentin-T/120	?
6	AEROSOL A-102 E	?
7	CaCO3	100
8	TiO2	80
9	Propylene glycol propyl ether	178
	1-Hydroxycyclohexyl phenyl	
10	ketone	204
	Trimethylolpropane ethoxylate	
11	triacrylate	av. 428



19

Average molecular weight determination

No.	Compound/Component	MW (g/mol)
1	Disponil SLS 101 Special	674
2	RHODAFAC RS/710-E	324
3	Emulsogen EPN 287	ave.1210
4	Polirol AL 1347	ave. 866
5	Imbentin-T/120	ave. 776
6	AEROSOL A-102 E	ave. 713
7	CaCO ₃	100
8	TiO ₂	80
9	Propylene glycol propyl ether	178
10	Irgacure 184	204
11	Trimethylolpropane ethoxylate triacrylate	ave. 428
12	Polydimethylsiloxane	n.d.

- Results of the DPRA testing are in line with the other classifications.
- Review of the available standards and guidelines concerning painting test for the leaching studies.
- ISO 15181-1:2007 (Paints and varnishes: Determination of release rate of biocides from antifouling paints) was selected.
- Testing of the method and harmonisation against an internal leaching standard operating procedure (SOP) is ongoing.

Summary from the skin sensitisation testing and comparison to existing classifications

Constituent Type	Name	CAS	Classification	CLP notifications (% of all)	Effects in- vivo (REACH)	DPRA - Skin Sensitisation	
Modifier	Calcium carbonate (CaCO₃)	471-34-1	Skin Irritant 2	Skin Irritant 2 (10%)	Ν	NA	
Pigment	Titanium dioxide (TiO ₂)	13463-67-7		Skin Irritant 2 (<0.1%)	Ν	NA	
Defoamer	Polydimethylsiloxane	63148-62-9		Skin Irritant 2 (1.6%)	NA	NA	
Coalescent	Propylene glycol propyl ether	1569-01-3	Skin Irritant 2	Skin Irritant 2 (20%)	N	Low	
Photoinitiator	Irgacure 184	947-19-3		Skin Irritant 2 (0.1%)	Ν	Minimal	
Diluent	ΤΜΡΕΟΤΑ	28961-43-5		NA	Y	High	
			Skin Irritant 2	Skin Irritant 2 (6.5%)			
Main resin	Epoxyacrylate	55818-57-0	Skin Sensitizer 1	Skin Sensitizer 1 (92%)	Y	NA	
Surfactant	XTT sodium salt	111072-31-2	Pre-registration			High	
Surfactant	RHODAFAC RS/710-E	9046-30-5	Not in the database		Low		
Surfactant	AEROSOL A-102E	68954-91-6	Skin irritant	Skin Irritant 2 (82%)	NA	High	
Surfactant	Imbentin-T/120	9043-30-5	Skin irritant	Skin Irritant 2 (21%)	NA	Low	
Surfactant	Emulsogen EPN 287 ? Not in the database						
Surfactant		Moderate					

Summary & Reflections

- Two different methods for conducting safety assessment of new biobased chemicals and materials are presented
- There a many ways of conducting a safety assessment and these should be selected on a case by case basis
- Important to note that no single test allows a full safety assessment
- Standard methods increase the comparability of different data sets and increase robustness
- The approaches outlined here are cost effective and high throughput methods potential for widespread use
- Neither method uses animals (*in vivo*), just cells (CHAMPION) or analytical chemistry (PERFECOAT)

Contact

CHAMPION - Harrie Besselink: PERFECOAT - Andy Booth:

harrie.besselink@bds.nl andy.booth@sintef.no **Bio-based Innovations** for Industrial Applications

24 April 2024, 09:00-17:00 CET

Acknowledgements

Horizon 2020 European Union Funding for Research & Innovation

These projects receive funding from the Bio-based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement Nos 887398 and 101022370. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Biobased Industries Consortium.